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Summary

A computable approximation to the nonlinear filtering problem, where the system
and data models are given by dx = a(t) x dt + o(t), dz = h(¢, x)dt + r(t)v(t) , is treated.
The approximation (with approximation parameter /) gives estimates which converge
to the optimal filter.

1. Introduction

In the ECG signal analysis with the aim of the enhancement of its potentials
the modern statistical methods of the signal analysis are used (Visser, Molenaar,
1988; Madhavan, 1989; Kadhim Kadhim et al., 1988). The filtering theory is a
base of these methods. A linear model has been used as a suitable first approxi-
mate model in many practical biometrical problems. But in some problems such
as the description of the phenomenon of biological growth, it is necessary to use
only nonlinear models for the identical description of these phenomena (Visser,
Malenaar, 1988). Therefore the optimal or suboptimal nonlinear filtering algo-
rithms can be used in these problems.

In the present investigation, we propose a method of the solution of nonlinear
filtering problem which can be applied to obtain the ECG signal from the noisy
observations.

Let w(?), v(t) denote two independent Wiener processes and define the pro-
cesses x(t), z(¢) by the Ito equations

dx(t) = a(t) x(t) dt + o(t) dw(?) , 1)
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dz(t) = h(t, x) dt + r(t) v(t) , 2)

where x(0)=x, — a Gaussian random variable with parameters
Uy Y, > ¥(0)=0,¢<T, with T denoting an arbitrary, but fixed positive number.

It is assumed that f(2), o(¢), r(¢), h(¢, x) are continuous functions and function
h(t, x) is of the form

h(t) x) =xg(t’ x) ’ (3)

where g(t, x) satisfies the Lipshitz condition with constant L.

The observed process (2) is given by a nonlinear equation. The nonlinearity
of this equation is noninversible. This situation is typical in the theory of extremal
systems. For extremal systems, the filtering problem, that is estimation of the
state variable x(z) based on the observed process z(¢), 0 <¢ < T , is denoted by
Wonham (1970) as an open (unsolved) problem.

If #, is the o-algebra generated by z(t), T < ¢, then the least squares estimate
of x(¢) based upon the observations z(t), T < ¢, is given by the conditional expec-
tation E(x(¢)|¥;) . Although stochastic differential equations for E(x(¢)|¥,;) are
known, the problem how to effectively compute E(x(¢)|7,) is still in bad shape.

It is known (Lipster and Shiryayev, 1977, 1978) that causal least squares state
estimation for system (1) and (2) requires, in general, real-time computation of
the solution of an infinite set of coupled stochastic differential equations in order

to generate the estimate olc\(t) =E(x(¢)| F,) of the state variable x(2). As a result
nonlinear filters (which compute 9'c\(t), ¢t = 0) have not become practical, yet.

2. A useful approximating process

In this section we describe a particular approximating process which is to be
used in Section 3. Let D, denote the finite difference grid on (0,¢), 0 <t < T, with

difference parameter A (Lobatch, 1989):
tp=kh, h=2"t, k=0,1,.,2"=N. (4)
Let us define a process {E\(t)} as follows
W) = x(v) g;(t,0) dv + () dv(x), t;<t<tyy, i= 0,N-1 , (5)
0, =x(t), i= O,N-T ,

gi(rae) =g(r79i): 1= 0) N-1 ’ EN(T) ={ XI)(’E)’ 1= O, N_l} . (6)
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Theorem 1. The following limit holds
. am.
lim &0(r) = 2(v). @)
Proof. It is known that the Wiener process has the following property
lw@) -wis)| < pv-s]¢, ®)

where 0<a < %, p — random variable, P{B < } = 1 . Thus, with probability 1,

N-1 t+1 N-1T1:+1
20 -t @] =13 [ %) [g6(s)) - glxx)) 1 ds | < <3 [ 126) L |xs) - x(x) | ds
i=0 T, i=0 7

N-1

= > @)L [2(t) - %) |1 - ]

=0

where t; =, + l(t;,; - 1), 0<l < 1.
Then

() - x(x;)| SAlf |%(s) - x(w) | dv + Ay |t - |- |x(r) | + Ay |uw(t,) - w(v)| =

i

t;

Ay [ ]x(s) - x(v) | ds + At - ;|- |x(@E)] + Ay |t -] =
¢

Ay [ |x(s) - x(v) |ds + y-|t; - 7|

%
with probability 1, where

A= max |a(t)|, A,= maxlo(t)]
0<t<N O<t<T

Y= max{A1|tH1 -6 x(t) } + Ag.

O0<i<N
Using the Bellman lemma (see Hartman, 1964) we have

t+1
|c(x) = x(tl)l sv ;01 - £]° +A1fexp{Al(tl+1—r>}y lt-t;|%dv sy, - |t - &]

l

with probability 1, where
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t+1
Yi=y+A; [exp{A(ti -} dr.
t.

i

Then

a.m. N-1 a.m.

|z(t) - Ty (@) = E lx@)] - Ay valtia - 61 |t -4l <
i

N-1 a.m.
max (A |x@, )| vilta - 619 2 |t -] =
0 = t = N-l l=0

a.m.
max (A; - |x@1)| 11 18 - 8:]%) -2 —>0.
Qi sN-1 N

Theorem 1 is proved.

Theorem 2. It holds w.p. 1

ply|Finy—=ply|F) €))

wherey €R!, ffN , ¢ denote o-algebras generated by €, v, t<t,and z,, T ¢,
respectively.

Proof. Let D,, denote the division of [0,t] defined by (4).
Then we have

{§(0)> g(tl)a' 0 ’g(tN)} = {2(0‘)3 E_»(tl))' . -az::,»(tNl)} )

N, =2"'=2N . Then
-TEN E —'}—t?N1 ’

where F iy = 0 {§(0), §(1),--5() } -
To show (9) we only need to prove that

Fon' = 5 - (10)
Using &,y — z(¢) we have (10). Next, it is necessary to show that
SN=P{y|TfN}

is a martingale. Using

-‘TZ,ZN_I (= j.’t’ZN»l, N = 2n .
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we obtain

E Sy | Foy, FioptseFow b = E{Sy |55} = p {y| Fip1} = Sy .

Using the convergence theorem of martingales we have

p{yIFinY—=p{y|F7) .

The theorem 2 is proved.
Remark. 1t is well known (Busy, 1965) that w.p. 1

B(exp [ h(x, 5(0) 35 do(o) - 5= [ K2x, 2(0) diet{(8) = y, 77)
0 0

PU|F y=pAy}= ; x T ;
E(exp{ [ h(x, x(v)) 7 %0 -55 [z, x(v)) de}| 7))
0 0
11
where E { -, 7/ } denotes the expectation over (-) given z(t), t = ¢, p,(y) is a density
of x(t), ¢ is fixed, R =r%.

3. The filtration theorem

Theorem 3. The least squares estimate of x(¢) based upon the observation
{8t ={E, tistst,, i=0,N-1 }is defined by

xy(®) = [£y(©) p (0] Fiy} do | 12)

where xAt,N(G) is a set of Kalman — Busy filters and the conditional density
p{0]|F5y}is defined in (11).

Proof. 1t is well known that the conditional expectation E {x(2)] ,’F,fN} is the
least squares estimate of x(¢) based upon the observation { y(t), 0 st <¢}. Using
the properties of the conditional expectation we have

{x®|Fin} + [E{x@)| 75,0} p (6| F 5y ) do

where E {x(t) |,TfN, 0} is the conditional expectation of x(#) based on
{€.n>T=t}and 0.

The optimal Kalman — Busy filter estimator and error covariance update
equations are given by Lipster and Shiryayev (1977, 1978):
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ity (£0) = alt) Ry (5,0) d + g (6:0) v(0) 5 (dE oy ~ £ (5,0) g (8:0) 1(0) -

2a(t) 1,(0) + 0%(t) - [gn (4,0) 1O = , (13)
tk <t=< tk+1’ k= 0,1,2,...,N —1, xN(O,O) = Wo, YO(G) o

Lainiotis (1971) showed that

t t
exp{ - o [ G (6.0) gy (5,0)° o + [ £(5,0) d (@) } PO )
0 0

p{0|Fin}= : t
S exp{- 5= f G (0.0) g (50)° d + [y (5.0) dEw(®) } p(@] ) 0
0 0 i
where

dP { x(t 0
B A ALy

and J’C\N(‘[,G) is defined by equations (12) and (13). Theorem 3 is proved.
Theorem 4. It holds w.p. 1
lim xp(t) = 2(2) ,

where x(¢) = E {x(¢)| 7/} .

Proof. The conditional expectations QN(t,O) are defined by (12), (13). Using
(14) we have

[xn(,0)-p{0|F v} d0<C, C=const.,

w.p. 1. Using the Lebesque theorem on majorante covergence we obtain

w.p.1l

[2n(0)p {0|Fiy) dO = [E {u(t)| Fin, 0} p (0| Fiin } dO —

[E@@®)|F50}p (0|73 d0=x().
We have shown that

A wp.l
xy () —= x@) .

The theorem 4 is proved.
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Remark on computation. Let us define a process denoted by & +,y Which con-

verges to x(t) for N —> . The method used in this paper can be used with the
process x(t) replacing approximation &, y in the formula (12).
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